home *** CD-ROM | disk | FTP | other *** search
-
-
-
- DDDDLLLLAAAAEEEEDDDD6666((((3333FFFF)))) DDDDLLLLAAAAEEEEDDDD6666((((3333FFFF))))
-
-
-
- NNNNAAAAMMMMEEEE
- DLAED6 - compute the positive or negative root (closest to the origin) of
- z(1) z(2) z(3) f(x) = rho + --------- + ---------- + --------- d(1)-x
- d(2)-x d(3)-x It is assumed that if ORGATI = .true
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE DLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO )
-
- LOGICAL ORGATI
-
- INTEGER INFO, KNITER
-
- DOUBLE PRECISION FINIT, RHO, TAU
-
- DOUBLE PRECISION D( 3 ), Z( 3 )
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- DLAED6 computes the positive or negative root (closest to the origin) of
- z(1) z(2) z(3) f(x) = rho + --------- +
- ---------- + ---------
- d(1)-x d(2)-x d(3)-x
- otherwise it is between d(1) and d(2)
-
- This routine will be called by DLAED4 when necessary. In most cases, the
- root sought is the smallest in magnitude, though it might not be in some
- extremely rare situations.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- KNITER (input) INTEGER
- Refer to DLAED4 for its significance.
-
- ORGATI (input) LOGICAL
- If ORGATI is true, the needed root is between d(2) and d(3);
- otherwise it is between d(1) and d(2). See DLAED4 for
- further details.
-
- RHO (input) DOUBLE PRECISION
- Refer to the equation f(x) above.
-
- D (input) DOUBLE PRECISION array, dimension (3)
- D satisfies d(1) < d(2) < d(3).
-
- Z (input) DOUBLE PRECISION array, dimension (3)
- Each of the elements in z must be positive.
-
- FINIT (input) DOUBLE PRECISION
- The value of f at 0. It is more accurate than the one
- evaluated inside this routine (if someone wants to do so).
-
-
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- DDDDLLLLAAAAEEEEDDDD6666((((3333FFFF)))) DDDDLLLLAAAAEEEEDDDD6666((((3333FFFF))))
-
-
-
- TAU (output) DOUBLE PRECISION
- The root of the equation f(x).
-
- INFO (output) INTEGER
- = 0: successful exit
- > 0: if INFO = 1, failure to converge
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-